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A general method is proposed for reducing problems concerning cracks, cuts, inclusions and interacting blocks in coupled half- 
planes to complex integral equations, both singular and hyper-singular. The method is based on the fact that if the 
Kolosov-Muskhelishvili functions are known for a whole plane, then the corresponding functions for coupled half-planes are 
obtained from them by simple transformations. Boundary integral equations (BIE) are presented, as well as fundamental solutions 
for isolated forces and periodic systems of forces, which may be used to construct new complex BIEs. © 2000 Elsevier Science 
Ltd, All rights reserved. 

Problems concerning cracks, cuts and/or inclusions near the interface of media with different properties, 
in particular, near the free or attached boundary of a body, are of much interest in the study of materials, 
fracture mechanics and mining geomechanics. A great many references to publications treating special 
cases of this kind, primarily in relation to cracks, may be found, e.g. in [1-4]. On the other hand, as yet, 
general equations suitable for arbitrary contours of cracks, cuts and inclusions have been constructed 
only for the case of a half-plane with a free boundary [5] (see also [6]). In Section 2 below such BIEs 
will be derived for arbitrary coupled half-planes. This is achieved by direct application of a device 
presented in Section 1 to the previously obtained equations for a whole plane [7-10]. 

An alternative approach to constructing BIEs is the use of fundamental solutions. To use this approach 
for coupled half-planes one needs suitable solutions. Once again, such solutions have been constructed 
only for the case of a half-plane [10-12]. In Section 3 below, again using the device described in Section 
1, we present the first construction of fundamental solutions for arbitrary coupled half-planes. 

1. G E N E R A L  F O R M U L A E  F O R  C O U P L E D  H A L F - P L A N E S  

Consider two elastic half-planes S 1 and S 2 coupled along a straight boundary. In the general case, 
the shear moduli and Poisson's ratios are different: ~q, vl in the lower half-plane and P2, v2 in the upper 
half-plane. The position and configuration of cracks, cuts and/or inclusions in the half-planes may also 
differ. In the case of inclusions, each may have different elastic characteristics. Let LI denote the total 
contour of the system of cracks, cuts and/or inclusions in the lower half-plane, and let L2 denote the 
total contour in the upper half-plane; L = L1 + L2 is the total contour. In the special case when ~2 = 
0 we have only the lower half-plane with stress-free boundary. If ~t2 = ~c, the problem corresponds to 
the case in which the boundary of the lower half-plane is rigidly attached. The interpretation of the 
cases ~tl = 0 and ~.q = ov is analogous. To simplify the discussion, we will assume that the individual 
contours comprising Lt and L 2 a r e  loaded in such a way that the total principal vector acting on each 
of them is equal to zero. A more general case is obtained by including special terms making allowance 
for the many-valuedness of the functions (see [1] for closed contours, [13] for cuts). Further simplification, 
without significant loss of generality, will be achieved by assuming in non-periodic problems that the 
stresses vanish at infinity. 

We introduce a global system of coordinates xOy with the x axis pointing right along the common 
boundary of the half-planes and the y axis pointing upwards. The solution will be sought in complex 
form [1]. 

Let us assume that we have expressions for the Kolosov-Muskhelishvili functions (KM functions) in 
the case when the contour L1 (or L2) lies in the whole plane. Let qh(z), ~¢1(z), ~o'~(z) = ~l(z), V'l(z) = 
u?l(z ) denote the KM functions for the contour L1 of the same type as those stipulated on L~ in the 
original problem; similarly, let q~z(Z), V2(z), ~(z)  = q~2(z), V~(z) = ~2(z) denote the KM functions for 
the problem on the contour L2 in the whole plane with the properties of the upper half-plane. Under 
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the conditions imposed above on the principal vectors of the forces on each of the contours and at infinity, 
functions with subscript 1 are holomorphic everywhere outside L1, in particular, in the whole upper 
half-plane. Functions with subscript 2 are holomorphic outside L2, in particular, in the whole lower half- 
plane. AI these functions vanish at infinity. The boundary values corresponding to these functions, of 
the stresses cp(t) and displacements ulz(t ) on L2, are assumed for the moment to be arbitrary; we 
will call them fictitious stresses and displacements, as indicated by the subscript f. Finally, these 
values may be given in special cases by integral representations of the KM potentials with known 
density. 

Let cy denote the complex vector of stresses arising on an element of unit area with normal n pointing 
to the right of the direction t of passage through the element: a(z) = (Ynn q- i~nt. This vector will always 
be considered in the local system (n, t). Unlike ~, the vector of displacements u will be used only in 
global coordinates: u(z) = Ux + iuy. 

The KM functions with subscript 1 generate fields of stresses ~o(t) and displacements ujq(t); the 
functions with subscript 2 generate stresses c~9(t) and displacements ug(t). By the standard formulae 
of complex representation [1], we have 

d~ 
~ (z) = % (z) + %(z)  + [zO)(z) + Vj(z)] 

(1.1) 
du1j d~ 

2,k ~ = ~k% (Z) - % (Z)- [Z% (Z) + % (Z)] 

where k = 1 if the point lies in the lower half-plane, k = 2 if the point lies in the upper half-plane, ~k 
is the Muskhelishvili parameter: Zk = 3 - 4Vk for plane deformation and Zk = (3 - vk)/(1 + Vk) for a 
plane stressed state;j = 1, 2. 

We now introduce two important functions which, in the final analysis, will serve for the solution of 
problems involving coupled half-planes. We note, first of all, that the formulae for the stresses in (1.1) 
do not contain the elasticity constants. Hence the stresses cry1 (z) and cry2(z) will remain continuous across 
the boundary y = 0 of the half-planes. Consequently, the sum or/1 (z) + ~r/2(z) will also be continuous. 

Unlike the stresses, the displacements ujq(z) and Uyz(Z), in the general case when Pl ~ ~2 = VI :¢ V2, 
experience a discontinuity at the boundary. Accordingly, the sum of the displacements ufj (z) + ul~(z ) 
will also experience a discontinuity. Letting a superscript plus (minus) denote limit values in the lower 
(upper) half-plane, we infer from (1.1) the following expression for the derivative of the jump of the 
sum at the interface y = 0 

• t +  ~ ' ~  p +  p - -  

AUf(X)  : ( U f l  --  Ufl )'q- (b/f2  --  UI 2) : 

_ Z1 . [01(x)+O2(x)]+ ~ 1 [Ool(x)+Oo2(x) ] (1.2) 
- 2~, .'2.2 27t, 

Om(x  ) = Oj(x)+ xO{(x)+ ~.'l(x), 002(x)= 02(x )+ x0"2(x)+ % ( x  ) 

where the prime in this case denotes differentiation in the direction of the x axis. and 001(x) and 002(x) 
are the limit values of the functions 

- -  - " 7  - -  - -  ""7" - -  
O01 (z) = • 1 (z) + zO1 (z) + W I (z), 002 (z) = O 2 (z) + zO2 (z) + W2 (z) (1.3) 

which are of key importance for the following constructions--with g(z) = g(z,) by definition for any 
function g(z). It is important that Ore(x) is holomorphic in the lower half-plane and O02(x) in the upper 
half-plane. 

It follows from the above that a solution of the original problem will be found if we construct two 
pairs of KM functions Oal(Z), Wal(z ) and O~2(z), q~2(z), holomorphic in each of the half-planes, 
discontinuous along the x axis, and such that the stresses era l(z) in the lower half-plane corresponding 
to O~1(z), W~l(z) transfer continuously into the stresses %2(z) in the upper half-plane corresponding 
to Oa2(z), W~2(z), whereas the difference ual(z) - u~2(z) of the corresponding displacements compensates 
for the jump Au'f(x) at the boundary of the half-planes: Z ~ a l ( X  ) --  U~2(X ) = - A l l ( X ) .  Then, by the KM 
formulae, the sums 

¢~(Z) = ¢~1 (Z) "b dJ) 2 (Z) -t- ¢~ aj (Z) ,  t I / (Z)  = ~I/1 (Z)  -t- ~I/2 (Z)  -t- ~aj (Z)  ( 1 . 4 )  
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where j = 1 in the lower half-plane and j = 2 in the upper half-plane, give the total stresses and 
displacements, which are continuous at the interface of the media whatever the fictitious stresses cr/(t) 
and displacements ul(t ). In sum, it remains to choose the fictitious values so that the total stresses and/or 
displacements satisfy the given boundary conditions on L1 and L2. This at once leads to complex 
equations for the fictitious quantities. Thus, the problem has been reduced to determining the additional 
functions O~/(z) and q%-(z) in each of the half-planes. 

The additional functions ~aj(z) and qJaj(z) (j = 1, 2) are quite easy to determine. Indeed, as we know 
[1, Section 112], taking q'~/(z) in the form 

~r~aj (Z) ---- -- [t~ aj (Z) + tY~ aj (7.) + Zt~ aj (Z)] ( 1.5) 

we obtain additional stresses 

% ( z ) = , t , # z ) - % ( ~ ) ~ + ( 1 - ~ ' ] , t ,  oj ,t," d~ dz \ dz ;  ( z ) + ( z - ~ )  oj(z)--~z (1.6) 

which have the following simple expressions on the interface y = 0 (z = z = x, dz/dz = 1). 

+ 
~ ( x )  = a,~+t ( x ) -  ,t,?,~ ( x ) ,  - - + o~2(x) = ~a2(X)-- (I',2 (X) 

Consequently, when representation (1.5) is used, continuity of the stresses implies that necessarily 
( ~ l  + ~a2)*-  (~1 + q~2)- = 0. Hence it follows that 

(I)a2 (Z) ----- --(I)al (Z) (1.7) 

For the additional displacements [1, Section 112] we have 

Consequently, 
direction 

• 1 2~t j%/(z )=ZJ~°J(z )+~J(Z) '&z-  -~z ~ J ( z ) - ( z - ~ ) ~ J ( Z ) - ~ z  (1.8) 

the following equalities hold at the interface y = 0 for the derivative in the x 

2glu,'a(x) = %1~+~, (x)+ ~ t ( x ) ,  2~t2u~2(x ) = %2~a2(X)+ ~+2(x) 

By (1.7), we can write this equality as 

21.t2U~2 (X) = -%2~al  (X) - ~+1 (X) 

and the derivative of the difference of displacements is 

The condition for compensation of the discontinuity z~u~(x) = -~u~(x) leads, by (1.2), to an adjunction 
problem for the limit values q)~*l(x), q);l(X) of the function ~al(Z), which is holomorphic off the interface 
y = 0  

2~t I Z[-t 2 ) ~,2~2 2~L l J 

1 )[~01(X) + ~02(x)] (1.9) 

Since the functions ~2(z), ~01(z) are holomorphic in the lower half-plane $1 and ~l(z), O02(z) are 
holomorphic in the upper half-plane $2, the solution of adjunction problem (1.9) is obvious 

{ fKIICPoI(Z)+K12~P2(Z) ,  Z ~ S l (1.10) 
(z) i~a2 (Z) 

[K21(I)l (£) + K22¢I)02 (Z), Z E S 2 

where 
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KI = g2 -P-t K21 = X21.I,1 - X l g 2  KI 2 = ~2~1"1 --~1~2 IJ'2 --gl (1.11) 
ILl + XI~2 ' }'1"2 + X2~I ' I"1"1 + XII-I-2 ' K22 = ~2 + X2~I 

For half-planes with the same properties (lal = la2, )~1 = ~2) all these coefficients, and accordingly 
also ~al(Z), Oa2(z), vanish. If there are no cracks, cuts or inclusions in the upper half-plane, we have 
• 2(z) = 0, O02(z) = 0. Then 

=~Kll~ot(Z), zESx 
~al(Z)=-~a2(Z) [K21~I(Z), z E S 2 

If in addition the interface y = 0 is stress-free then, setting g~ = 0, we infer from (1.11) that K11 = -1, 
K21 = 1. If the interface is rigidly attached, then, setting gz = oo, we infer from (1.11) that KI1 = l/x1, 
K21 = -~1. 

In all cases, Ore(z) and ~02(z) are defined by formulae (1.3). The additional stresses %j(z) and 
displacements uaj(z) (j = 1, 2) are given by formulae (1.6) and (1.8). The solution of the original problem 
for stresses cr(z) and displacements u(z), as mentioned, is given by the sums 

~(z)=c;/t(z)+c~/2(z)+%fiz), u(z)=u/~(z)+uy2(z)+u,j(z) (1.12) 

These formulae solve the problem if the functions Oj(z), ~j(z) (j = 1, 2) for the arbitrary fictitious 
stresses cry(t) are known on a part L~ of the contours L1 and L2 with given cr(t) and for the arbitrary 
fictitious displacements ut(t ) on a part L,  with given displacements u(t). Indeed, using Eqs (1.12) and 
equating cr(t) and u(t) to the given values on L, we obtain equations for the fictitious quantities cr/(t) 
and uf(t) 

t~ fl(t)+t~ f2(t)+O,!/(t) = O(t), t ~ L o 
ufl(t)+uf2(t)+uaj(t) = u(t), t ~ L u (1.13) 

Note that %j(t) and uaj(t) depend linearly on crla(t), c~f2(t), cryl(t) and uf2(t). Therefore, Eqs (1.13) are 
linear in the fictitious quantities.'If one is using integral representations of KM potentials with unknown 
density, then Eqs (1.13) are equations for the density. Once crjq (t), uyl(t) or the density have been found 
from (1.13) for the contour L1 in the lower half-plane, a well as crf2(t), uf2(t) or the density for the contour 
L2 in the upper half-plane, the functions Oj(z), ~j(z) (j = 1, 2) are fully defined. Then formulae (1.4), 
(1.10), (1.3) and (1.5) determine the KM functions of the original problem. 

2. DERIVATION OF BIEs USING INTEGRAL REPRESENTATIONS 

Representations of the KM functions by Cauchy and Hadamard integrals provides a convenient tool 
for deriving complex BIEs in explicit form for the problems under consideration, using the formulae 
developed above. To abbreviate the notation, we will assume that there are cracks, cuts and inclusions 
only in the lower of the two coupled half-planes. The subscript j in the notation for the density and the 
contour will therefore be omitted. It will be retained, however, for the elasticity constants and KM 
functions, which differ in the lower and upper half-planes. In sufficiently general form, the integral 
representations of the KM functions may be written as 

i f  q'(x)dx ~1 (z) dx 1 = I _d(Aq) 1__ [ "~q'(x) 
(2.1) 

The operatorA may be chosen by considerations of convenience, depending on the specific properties 
of the contour L and the boundary conditions on it. In particular, i fAq = q(t) we have a representation 
[14] for a closed contour with given stresses; ifAq = -xlq(t), formulae (2.1) correspond to representation 
with given displacements [15]; ifAq =f+ - f -  - q, we obtain the representations underlying the equations 
for cracks with given stresses on their sides [7]; i fAq = -2bq(u + - u-)+ x lq ,  Eqs (2.1) become the 
representations underlying the BIEs for cracks with given displacements on the sides [13]. (The last 
two representations have also been widely used [2, 16].) 

Substituting (2.1) into (1.3), and hence into (1.10), we obtain 
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I K  [ 1 _-7 ~ - ~  ~ 1 d(A'q)], 
1' -2"-7. I q ~ a ~ -  21ti [ -~'z- z .J z ~ SI 

I~ al (Z) = --I~)a2 (Z) = 2rc~ L 
I q'dx ~ S~ 

K21 7 g / [  X--Z Z 

(2.2) 

For the additional stresses and derivative of the displacements, using (2.2) in (1.6) and (1.8), we have 

(~al (Z) = t~al (Z) + Gal (Z), 2glUal (Z) = ~ l ~ a l  (Z) - Gal (Z) 

where 

[ 1 ,a z - z  (,c .~)d,c+ 1.~i ~ Z-~d(Aq)] - 
GaI(Z)=KII ~ i !  q OZ ( '~ -~  2 z/t, L ~zzx- -  

(2.3) 

~ I [ q'dx (2 .4)  -r 'Tz 
and the quantity O,l(z) is given by the first formula in (2.2). 

We stress that the functions ~,l(z), q~a~(z) and, therefore, Gal(Z ), t~al(z ), Ual(Z ) are continuous in the 
lower half-plane. This important property enables us easily to extend known BIEs to problems involving 
coupled half-planes. Indeed, by (1.4), in the case in question, the KM functions in the lower half-plane 
are O(z) = ~l(z) + ~,l(z), q~(z) = qq(z) + W,l(Z). Substituting them into the boundary conditions for 
the stresses and the derivative of the displacements on L we obtain 

(2.5) O~(t)+~:((t)+t[~+ (t)+ Wi±(t)] d~dt (~+- = - -  I~al 

~., (I)~: ( t ) -  (l)f (t) - t[(I)~+ (t) + ~F~ (t)] ~ = 21a, [u '-+ - u•, (t)] (2.6) 
d t  

where %1(0, u,l(t) are the additional stresses and derivatives of displacements, defined by formulae 
(2.3). As mentioned, they are continuous across L and are therefore used without superscripts _. A 
superscript plus (minus) denotes limit values to the left (right) of the direction of motion along the 
contour. 

It follows from (2.5) and (2.6) that the complex BIEs corresponding to singular solutions for the whole 
pl+ane may be extended to problems involving coupled half-planes if one replaces a--- by cr ± - %1 and 
u -  by u ± - u,l, where as before cr ± and u ± and the true stresses and displacements on the contour. 
When that is done, the discontinuities of the stresses A~ = o ± - c- and of the displacements Au = u + - u- 
on the contour remain unchanged, since the additional fields are continuous. The density q and its 
derivative q' are also given by the same expressions in terms of the discontinuities of the true 
displacements and stresses 

q(t)= 2glAu+Af, q'(t)= 21"hAu'+Acr 
~l +1 )~1 +1 

where, as before, the subscript 1 indicates that the elasticity parameter refers to the lower half-plane. 
Finally, one can write down complex equations for problems with coupled half-planes by applying 
these transformations to the BIEs for an infinite plane. Rather than present all the equations, we will 
confine ourselves to three illustrations, using notation which, for brevity, will be used in the next section 
tOO 

I 1 1 x - x  ~ - ~  
m I = 2~(Z 1+1)' S('~,t)=~z_t H(x,t)= (X_O 2' R(x,t)- x - t  ' Q(x,t)=~(x_t) 2 

The singular equation developed in [7] for a plane with cuts takes the following form after the 
transformation just described for coupled half-planes 

-2g,imiS [2Au'S('c,t)+ Au'~kl d'c+-A'-~u'~k2 d~]+ BA(~+(~ = _ _  
L 3t ~t d 

(~+ + G -  

2 
, t E L  (2 .7)  
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where 

BAG =-iml~ [(l- xi)A~S(x,t)- x1A~t  dx +-~-~-t dxl 
L 

and in this case it follows from (2.3) and (2.4) that 

Gal =-21. t . l iml  j " [Au'-~-d'c+-A~u'-~-5-d~l+BalA~ (2 .8)  
L Ot Ot J 

BalA~=-iml ~ {A~ t  [k3 +(~i + l)Kll ln(~-t)]dz +-~ ~---~[k4-(:~l + l)KltR(t,'c)]d' } 
L 

kl(z,t ) = In z - t  k2(x,t)= z - t  (2.9) 
~ - i '  ~ - ?  

k 3(x,t) = -Kl i [ ln (~-  t) + ( t -  i)Q(~, ?)] + K21 ln(x- ?), k 4(x,t) = KII[R(t, ~) + R(x, t)] 

The hyper-singular equation is obtained from (2.7) by integrating the terms containing the derivative 
of the discontinuity of the displacements by parts 

[ ~t  -~t ] cY++~- t ~ L  (2"10) -2].tliml5 2AuH(x,t)-Au dk I --~u dk 2 +BAo+~a l  - -------7-, 
L 

~al =-2[tlimlS [-Au-~tdk3-"~u~---~dk41wBalA(Y 
L 

(the term ~,1 is obtained from (2.8) by analogous integration by parts). The differentials in (2.10) and 
in subsequent formulae are evaluated with respect to x. 

For inclusions and systems of blocks (granules) in the lower half-plane, representations (2.1) are 
conveniently used on the assumption that the stresses on the boundaries are continuous. Then the 
operator A occurring in (2,1) is defined by the formula Aq = -q(t), and consequently dAq = -q'(x)d~. 
Then,  using these representations for the matrix, the inclusions and the blocks (granules), we have an 
extension of the equation of [8] to block systems. We will write it in a hyper-singular form which extends 
the equation obtained in [9] to coupled half-planes 

217zi ! {2AuH(x,t)dx-Au~td(kl+k3)-A'ff~td(k2+k4)- 

- (a  3 - 2a I )erS('c, t)dx + cy ~t [(ai - a3 )kl + al k3 + a3 KI i ln(~ - t)]d"c + 

+~-~t[aik2+alk4-a3KtlR(t,'c)]d-z= a2~(t ), teL (2.11) 

~++1 X - + I  Z++I  ~ -+1  ~++1 X - + I  
a I = + - - ,  a 2 = + . - - ,  a 3 = - -  2bt + 2t-t- 2g + 2bt- 2g + 2g-  

The kernels kb k2, k3 and k4 are given by formulae (2.9). 
The contour L may include cracks and holes; if  the hole is circumscribed in the clockwise sense, we 

must assume that l /g- = 0, u- = 0. If the contour L consists only of cracks subject to stresses of equal 
value but opposite in direction, we have al = 0, a3 = 0, a 2 = 2(Z 1 + 1)/(2g 0. Then Eq. (2.11) is converted 
into Eq. (2.10), where in this case Act = 0 (or + = or- = c~). In the special case of a single load-free half- 
plane, Eq. (2.11) will be identical with an equation obtained previously [5] by other means--using 
complex singular solutions. Such solutions for coupled half-planes will be discussed in the following 
section. 

3. S I N G U L A R  S O L U T I O N S  F O R  C O U P L E D  H A L F - P L A N E S  

Another approach to the derivation of complex BIEs is to follow the method of real potentials. This 
approach [6, 10] uses complex forms of singular solutions, that is, solutions for point forces. Such 
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solutions exist for a whole plane (see, e.g. [1]), for a half-plane with a free boundary [11] and for a half- 
plane with a free or rigidly attached boundary [12]. In what follows, the formulae of Section 1 will be 
used to derive complex singular solutions corresponding, first, to isolated forces and, second, to periodic 
systems of forces. The first serve for non-periodic problems and the second for periodic problems 
involving coupled half-planes. 

Isolated force. Suppose point unit force is applied at a point x of the lower half-plane in the direction 
of the x (or y) axis. Quantities corresponding to this case will be labelled by a superscript x (or y). There 
are known formulae for the KM functions when the force is applied to a whole homogeneous plane 
with the properties of the lower half-plane [1]. Using these functions and the formulae of Section 1, 
one arrives after some reduction at expressions for the additional functions. 

For the KM functions, we have 
in the lower half-plane 

q)~l (z, x) = -m I Kj] [-~j In(z - ~) + R(x, z)] 

~ j  (z, x) = -m I {-K21 In(z - ~)  + K l t z [ ~ S ( z ,  ~) - Q('c, z)] } 

tpvl (z, x) = - i  m I KI t [-~i In(z, ~) - R(x, z)] 

g~l (z, x) = - i  m I { K2t ln(z - ~) + Kitz[~lS(z, x) + Q(x, z)] } 

in the upper half-plane 

X tp~2 (z,'c) - m~ Kzt In(z - x) 

~x2 (z, x) = m t {-K2tzS(z, x) + KII[ZI ln(z - x) - R(~, z)] } 

tp~ 2 (z, x) = i m~ K2] In(z - x) 

~ (z, x) = i m~ {-K2~zS(z, ~) - KI ~ [~  ln(z - x) + R(~, z)] } 

The additional displacements, principal vector of forces and stresses are obtained by substituting these 
formulae into the KM formulae. Since the resulting formulae are cumbersome, we will present them 
explicitly only for the key quantities--the additional displacements. These are given, after the above- 
mentioned substitution, by the following formulae 

in the lower half-plane 

2kt ~ u,~ (z, x) = -m I {K2t In(~ - "c) + Ki ~ [ - ~  ln(z - ~) + ~ R('c, z) + ~ R(z, x) + R(z, x)R(~, ~)] } 

21xlu~'l (z, x) = - i  mi{K2~ ln(~ - x) + Kl~ [-~ 2 In(z - ~) - ~[ R(x, z) - ~] R(z, x) + 

+R(z, x)R(~, ~)] } 

in the upper half-plane 

2112uX2 (z, x) = -m t {-K2] [~2 In(z - x) - R(z, ~)] + K]l [ZI ln(~ - ~) - R(x, ~)] } 

2~2u/~'2 (z, x) = - i  m t {-K2] [~2 ln(z - x) + R(z, x)] + KI l[~l ln(~ -- ~) + R(x, ~)] } 

The fundamental solutions for coupled half-planes are the sums of fundamental solutions for a whole 
plane and the additional quantities found: u~(z, x) = ~.(z, x) + ~.(z, x), uY(z, x) = ~j(z ,  x) + ~y(Z, x) 
(j = 1, 2) where ui/(z, -c) are complex fundamental solutions for the displacement field in the case of a 
whole plane 

2ktju~i (z, x) = -m I [~j in(z - x) + ~t ln(~ - ~) - R(z,'c) - R('c, z)] 

2~tiu~) (z, x) = - i  m i [~j In(z - x) + ~t In(~ - ~) + R(z, x) + R(x, z)] 

In all these formulae the coefficients Kll and g12 are defined by formulae (1.11). In the special case 
of one load-free half-plane we have K11 = -1, K21 = 1, and the results are equivalent to previously known 
formulae [11] (presented in explicit form in [10]). In the case of a rigidly attached half-plane, when 
Kll = 1/2, K21 = -Zl, and in the general case of two coupled half-planes, these formulae are still 
unpublished, as far as we know. 
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Periodic system o f  forces. In exactly the same  way, one  obtains  fundamen ta l  solutions for  a n-per iodic  
system of  forces  appl ied at the points  ~ = m n  of  the lower half-plane (rn = . . . ,  -2 ,  - 1 ,  0, 1, 2 . . . .  ). 
(For  an arbi t rary  real per iod a it will suffice to add the fac tor  n/a before  the var iables  z and z - - a n d  
hence also before  £, and  f - - i n  all subsequent  formulae.)  One  begins with the formulae  for  a whole plane, 
given the same  disposi t ion of  per iodic  systems of  forces  acting in the direct ion of  the x or  y axis [10]. 
Using these formulae  according to the scheme of Section 1, one obtains expressions for  the K M  functions 
de te rmin ing  the  total  stresses. The  K M  functions defining the d isp lacements  and principal  vec tor  of  
forces  are  ob.tained by integrat ing these expressions; af ter  substi tuting the result  into the K M  fo rmulae  
for  d i sp lacements  one  obtains  expressions for  the required  singular solutions: 
in the lower  hal f -p lane  

2Ix lu x (z, x) = - m  I {~1 In sin(z - x) + ~l In sin(z - x) - [(z - ~) - (x - ~)] ctg(~ - ~) + 

+K2t In sin(z - ~) + Kj i [-)~ ~ In sin(z - ~) - ~1 (x - ~) ctg(z - ~) + (z - z)(~l ctg(~ - "c) + 

+(x - ~)cosec 2 (~ - x))] } 

21.t lu y (z, x) = - i  m I {~1 In sin(z - x) + ~1 in sin(z - "t:) + [(z - ~) - (x - ~)] ctg(~ - ~) + 

+K21 In sin(z - ~) + KI l [ - ~  2 In sin(z - ~) + ~1 (x - ~) ctg(z - ~) + (z - z ) ( -~ l  ctg(~ - x) + 

+(x - ~) cosec 2 (~ - x))] } 

in the u p p e r  half -plane 

2~t2uX(z, x) = -mj  {X2 In sin(z - x) + Xl In sin(z - x) - [(z - E') - (x - ~)]ctg(z - I:) - 

-K2t  [~2 in sin(z - ~:) - (z - ~)ctg(z - x)] + K 11[~1 In sin(z - x) + (x - ~)ctg(z - x)] } 

21.t2u y (z, x) = - i  m~ {~2 In sin(z - "~) + ~ In sin(z - x) + [(z - E) - (x - ~)]ctg(z - "~) - 

- K ~  [Z~ In sin(z - x) + (z - ~)ctg(z - z)] + K~ ~ [Zm In sin(z - x) - (x - ~) ctg(z - x)] } 

In the special cases of  a lower half-plane with free boundary  (KN = -1 ,  Kel = 1) and with rigidly 
a t t ached  boundary  (K11 = 1/X~, K2~ = - ~ ) ,  one  obtains  fundamen ta l  solutions identical  with previous  
results  [16], apar t  f rom te rms  cor responding  to the h o m o g e n e o u s  state of  the half-plane.  

Analysis shows that  the complex displacements u~(z, ~) defined by these formulae  have a cyclic constant  
i,4 in bo th  half-planes;  the d isp lacements  uS(z, z) have a cyclic constant  -A,  where  

A =(K~t + ~ 2 K l ~ ) / [ 4 ~ ( Z  I + I ) ] = [ Z 2 ( 1 - K 2 ~ ) - ~ I ( K ~  + 1)]/[41,t2(Zl +1)] 

( the  last pa r t  o f  the  equali ty is ob ta ined  by using relat ions (1.11)). 
No te  tha t  all the fo rmulae  for  a per iodic  system of  forces  may  be ob ta ined  f rom the cor responding  

fo rmulae  for  isolated forces  by formally replacing ln~ by In sin ~, 1/~ by ctg ~ and 1/~ 2 by 1/sin 2 ~. 
This  research  was suppor ted  financially by the Russian Foundat ion  for  Basic Research  (97-05-64191). 
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